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Abstract

The comprehensive description of Multidimensional Fourier Transform applied to arbitrary sampled NMR data is presented. Line-
shapes and signal-to-artifact ratio are discussed in detail with regard to time domain sampling scheme and applied data weighting. It is
demonstrated that transformation method with simple summation instead of numerical integration is most useful for significantly under-
sampled experiments. Additionally, the optimized random sampling schedule which enables significant improvement of obtained spectra
is proposed. The new procedure of cleaning spectra is presented, it is based on predictability of artifacts pattern when sampling scheme
and amplitude of intense signals are known. The results enable observation of high dynamic range spectra as for example heteronuclear
edited NOESY. We show the application of new approach to the 3D 15N-edited NOESY-HSQC spectrum acquired for 13C, 15N labeled
ubiquitin sample with random time domain sampling.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The key advantage of multidimensional NMR spectros-
copy [1] is resolving of spectral frequencies by spanning
them in different dimensions. Therefore, it enables one to
assign individual correlation peaks to group of mutually
interacting nuclei, and thus provides unique source of
information about biomolecular structure, interactions,
and dynamics. However, despite of gradually increasing
sensitivity of modern NMR spectrometers, the main limita-
tion of multidimensional NMR experiments is measure-
ment time which grows rapidly with number of
dimensions and expected resolution. This is because of
Nyquist theorem sampling requirements (Eq. (1)) for con-
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ventional acquisition with data points lying on the Carte-
sian grid.

Dti 6 ðswiÞ�1 ð1Þ

where Dti is delay between time points in i-time domain,
and swi is required spectral width. While the resolution in-
creases with sampling of longer resolution time, using of
Dti above Nyquist limit results in ambiguity of frequency
discrimination commonly referred as signal folding. The
natural limitation of maximum evolution time by signal de-
cay due to transverse relaxation is, in the most cases, not
reachable in ND NMR spectroscopy (N > 2) even for bio-
molecules outside of extreme narrowing regime. In the all
cases conventional processing of multidimensional NMR
spectra employs sequential application of 1D discrete com-
plex Fourier Transform (Eq. (2)) in consecutive time
domains.

mailto:kozmin@chem.uw.edu.pl


K. Kazimierczuk et al. / Journal of Magnetic Resonance 188 (2007) 344–356 345
SðxÞ ¼
Xtmax

t¼0

f ðtÞ expð�ixtÞ ð2Þ

Therefore, for example 2D FT, applied to signal f(t1, t2),
could be described for convenience as in Eqs. (3ab), with
the spectrum computed in the two separate steps:

f ðt1; t2Þ !
FT2 gðt1;x2Þ !

FT1 Sðx1;x2Þ

In the first, all summations with respect of t2 are calculated
and give rise to mixed time/frequency domain signal
g(t1,x2), followed by series of summation with respect to
t1, in the second step, resulting in spectrum S(x1,x2):

gðt1;x2Þ ¼
Xt2 max

t2¼0

f ðt1; t2Þ expð�ix2t2Þ ð3aÞ

Sðx1;x2Þ ¼
Xt1 max

t1¼0

gðt1;x2Þ expð�ix1t1Þ ð3bÞ

In recent years several new approaches for non-conven-
tional probing of evolution time space were developed
and allowed for an acceleration of multidimensional
experiments.

The idea of Accordion Spectroscopy [2,3] was employed
in radial sampling followed by radial 1D FT with multiple
quadrature. It enabled direct evaluating of frequencies
from projection spectra by solving systems of linear equa-
tions for each peak in the new variants of Reduced Dimen-
sionality (RD) techniques [4–6]. The same kind of sampling
of time domain, but along set of radial directions, allows
also for calculation of full dimensionality spectra employ-
ing methods based on backprojection [7] imaging technique
using different strategies [8–16]. Other methods of fast
acquisition include: multidimensional decomposition [17–
19], filter diagonalization [20,21], maximum entropy recon-
struction [22–26], and spatially encoded chemical shift evo-
lution followed by spatially resolved acquisition [27]. Also,
algorithms of Fast Fourier Transform (FFT) of non-equi-
spaced data based on polynomial interpolation [28] were
employed to reconstruct spectrum from sparsely sampled
data sets [29].

Recently, we have shown [30–32] that the application of
FT with respect to two or more time variables simulta-
neously is a reliable approach to processing of arbitrary
sampled multidimensional NMR data sets. In this method,
referred below as Multidimensional Fourier Transform
(MFT), contrary to conventional 2D FT computed sequen-
tially using Eq. (3), computation of point of 2D spectrum
S(x1,x2) is performed in a single step according to Eq.
(4), where w(t1, t2) denotes discussed later weights:

Sðx1;x2Þ ¼
Xt1 max

t1¼0

Xt2 max

t2¼0

expð�ix1t1Þf ðt1; t2Þ expð�jx2t2Þwðt1; t2Þ

i2 ¼ j2 ¼ k2 ¼ �1 and ij ¼ ji ¼ k;

jk ¼ kj ¼ �i; ki ¼ ik ¼ �j ð4Þ
MFT as given in Eq. (4) does not require data points dis-
tributed in rows and columns contrary to conventional ap-
proach employing sequence of 1D transforms. Therefore,
the key feature of MFT is its ability to obtain spectrum
using arbitrary sampling pattern in the time domain. In
such case it is generally not possible to employ FFT algo-
rithms. We have shown examples using radial, spiral sam-
pling [30], and we have found that best results can be
achieved employing random time domain points distribu-
tion [31]. Additionally, in the later case of irregular sam-
pling no signal folding is observed. These results were
confirmed by other groups for radial [33,34], concentric
rings [35], and recently for random sampling [36]. The 2D
MFT as defined in Eq. (4) provides identical results as con-
ventional when evolution time domain is sampled using
Cartesian grid.

The significant drawback of MFT applied to sparsely
sampled interferograms are artifacts appearing due to
ambiguities and irregular data points distribution. The sim-
plest artifacts pattern is observed for radial sampling. It
forms tilted lines crossing at the signal position, its origin
are ambiguities identical as obtained in backprojection
techniques. In the case of spiral sampling the artifact
pattern is more dispersed but still dependent on actual sam-
pling parameters. The lowest level of artifacts is observed
for random sampling. The signal-to-artifact ratio increases
with square root of number of data points, exactly like in
the case of always present thermal noise.

In all cases, the artifact pattern is determined by time
domain points distribution. In this paper we analyze origin
and pattern of artifacts in relation to sampling scheme and
applied processing. We show that sampling artifacts can be
significantly reduced by coarse determination of strong
peaks frequencies, prediction of the form and amplitude
of sampling noise followed by artifact subtraction. This
procedure is especially valuable for spectra with high
dynamic range of peak amplitudes as for example NOESY.
2. Theory

2.1. Multidimensional FT

The 2D case of MFT is given in Eq. (4). It should be
pointed out that, as an extension of complex 1D FT, ND
case of MFT requires hypercomplex notation to properly
describe quadrature. In the general N-dimensional case
MFT quadrature could be shortly described using commu-
tative Clifford Fourier Transform [37–39].

In practice, numerical computations are performed on
real numbers, thus the real part of discrete 1D FT (Eq.
(2)) should be evaluated, assuming signal f(t) = exp(iXt) as

Re½SðxÞ� ¼
Xtmax

t¼0

cosðXtÞ cosðxtÞ þ
Xtmax

t¼0

sinðXtÞ sinðxtÞ ð5Þ

Independently of processing method to obtain full infor-
mation about signs of frequencies in 2D experiment one
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needs to acquire separately four different modulations
(Eqs. (6a)–(6d)), where X is signal frequency:

f ðt1; t2Þ ¼ cosðX1t1Þ cosðX2t2Þ ð6aÞ
f 0ðt1; t2Þ ¼ cosðX1t1Þ sinðX2t2Þ ð6bÞ
f 00ðt1; t2Þ ¼ sinðX1t1Þ cosðX2t2Þ ð6cÞ
f 000ðt1; t2Þ ¼ sinðX1t1Þ sinðX2t2Þ ð6dÞ

In the conventional 2D FT approach Eqs. (6a) with (6b)
represent real, and (6c) with (6d) imaginary parts of signal
in t1, i.e., cos(X1t1)exp(iX2t2) and sin(X1t1)exp(iX2t2),
respectively. Whereas, (6a) with (6c) and (6b) with (6d)
are real and imaginary components of signal in t2: ex-
p(iX1t1)cos(X2t2) and exp(iX1t1)sin(X2t2). The complex vec-
tors (Eqs. (6ab) and (6cd)) are transformed separately with
respect to t2, resulting in the complex interferogram
g(t1,x2) (Eqs. (7ab)) which is used for subsequent 1D FT
in t1.

gðt1;x2Þ ¼ Re½Sðt1;x2Þ� expðiX1t1Þ ð7aÞ
g0ðt1;x2Þ ¼ Im½Sðt1;x2Þ� expðiX1t1Þ ð7bÞ

In the case of 2D MFT the simplest way is to treat signal
f(t1, t2) defined in Eqs. (6a)–(6d) as the hypercomplex
number:

fðt1; t2Þ ¼ cosðX1t1Þ cosðX2t2Þ þ i sinðX1t1Þ cosðX2t2Þ
þ j cosðX1t1Þ sinðX2t2Þ þ k sinðX1t1Þ
� sinðX2t2Þ

¼ expðiX1t1Þ expðjX2t2Þ ð8Þ

Therefore, the real part of 2D MFT as defined in Eq. (4),
can be described as a sum of four terms given in Eq. (9):

Re½Sðx1;x2Þ�

¼
Xt1 max

t1¼0

Xt2 max

t2¼0

cosðX1t1Þ cosðX2t2Þ cosðx1t1Þ cosðx2t2Þ

þ
Xt1 max

t1¼0

Xt2 max

t2¼0

sinðX1t1Þ cosðX2t2Þ sinðx1t1Þ cosðx2t2Þ

þ
Xt1 max

t1¼0

Xt2 max

t2¼0

cosðX1t1Þ sinðX2t2Þ cosðx1t1Þ sinðx2t2Þ

þ
Xt1 max

t1¼0

Xt2 max

t2¼0

sinðX1t1Þ sinðX2t2Þ sinðx1t1Þ sinðx2t2Þ ð9Þ

It should be noted that basis functions of hypercomplex 2D
Fourier Transform differ from basis functions of 2D com-
plex Fourier Transform [40].

In order to use interactive phasing of resulted spectra it
would be necessary to calculate not only the real part of
MFT given in Eq. (9), but also additionally three imaginary
parts of Eq. (4). However, due to saving of computing
time, it is always preferable to set pulse sequence to obtain
correct and predictable zero and first order phases in indi-
rectly sampled time domains, and include time domain
phases in Eq. (9).
3. Results

3.1. Conventional sampling and MFT

In the case of conventional sampling, the result of one-
step MFT procedure is equal to that obtained by sequence
of 1D transforms. Proof of this fact is quite simple:

Sðx1;x2Þ¼FT1fFT2½f ðt1; t2Þ�g

¼
X

m

X
n

f tm
1 ; t

n
2

� �
exp �ix2tn

2

� � !
exp �jx1tm

1

� �
¼
X

m

f tm
1 ; t

1
2

� �
exp �ix2t1

2

� �
þ f tm

1 ; t
2
2

� �
exp �ix2t2

2

� ��
þ�� �þ f tm

1 ; t
N
2

� �
exp �ix2tN

2

� ��
exp �jx1tm

1

� �
¼ f tm

1 ; t
1
2

� �
exp �ix2t1

2

� �
þ f tm

1 ; t
2
2

� �
exp �ix2t2

2

� ��
þ�� �þ f tm

1 ; t
N
2

� �
exp �ix2tN

2

� ��
� exp �jx1t1

1

� �
þ�� �þ exp �jx1tM

1

� �� �
¼
X
m;n

f tm
1 ; t

n
2

� �
exp �ix1tm

1

� �
exp �jx2tn

2

� �
¼MFT f t1; t2ð Þ½ � ð10Þ

Of course, MFT calculations are more time consuming
since generally FFT algorithm cannot be used. Depending
on the number of time points and desired spectral resolu-
tion, calculations can take from few minutes to few hours
on a single PC.

3.2. Spiral sampling

Spiral sampling of evolution time space determines
coordinates of time domain points by the following
equations:

t1 ¼ r cosðarþ wÞ ð11aÞ
t2 ¼ r sinðarþ wÞ ð11bÞ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1 þ t2

2

p
and a is constant (later called ‘‘spiral

parameter’’). Radius value r is incremented with step Dr

and w is the phase of spiral. Point response function of spi-
rally sampled FID can be calculated from the following
Fourier Transform integral of signal of zero frequency
f(t1, t2) = 1:

Sðx1;x2Þ ¼
Z

dt1

Z
dt2 expð�ix1t1Þ expð�jx2t2Þ ð12Þ

which, in polar coordinates can be written as

Sðx1;x2Þ ¼
Z 2p

0

du
Z 1

0

dr exp½�ix1r cosðarþ wÞ�

� exp½�jx2r sinðarþ wÞ�r ð13Þ

where r is a Jacobian included to provide proper integra-
tion. Note however, that such procedure is equal to multi-
plying signal by r, which is equivalent of weighting or
apodization procedure. It leads to narrowing of spectral
lines but makes signal to thermal noise ratio worse in the



K. Kazimierczuk et al. / Journal of Magnetic Resonance 188 (2007) 344–356 347
case of decaying signals. Often it is preferred to have good
S/N ratio than perfectly Lorentzian lineshapes.

Setting polar coordinates for frequency domain, i.e.,
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
and U ¼ arctan x2

x1

� �
followed by integra-

tion over / results in

SðR;UÞ ¼ 2p
Z 1

0

dr exp½�iRr cosðUÞ cosðarþ wÞ�

� exp½�jRr sinðUÞ sinðarþ wÞ�r ð14Þ

For analysis of above expression, Bessel functions of the
first kind can be employed. Knowing one of basic proper-
ties of Bessel functions:

expðiz cos hÞ ¼
X1

n¼�1
inJ nðzÞ cosðnhÞ ð15Þ

And trigonometric relations:

cosðhÞcosðarþwÞ¼1

2
½cosðh�ar�wÞþcosðhþarþwÞ� ð16aÞ

sinðhÞsinðarþwÞ¼1

2
½cosðh�ar�wÞ�cosðhþarþwÞ� ð16bÞ

After simple substitution one can obtain expression for
integral (Eq. (14)).

SðR;HÞ ¼ 2p
Z 1

0

dr
X1

n¼�1
inJ n

Rr
2

	 

cos n H� ar� wð Þ½ �

" #

�
X1

n¼�1
inJ n

Rr
2

	 

cos n Hþ arþ wð Þ½ �

" #

�
X1

n¼�1
jnJ n

Rr
2

	 

cos n H� ar� wð Þ½ �

" #

� �
X1

n¼�1
jnJ n

Rr
2

	 

cos n Hþ arþ wð Þ½ �

" #
r ð17Þ

Integrating over r functions of the following formula:

J n
Rr
2

	 

cos nðUþ arþ wÞ½ � ð18Þ

gives non-zero results only for spectral coordinates of rings
of radii R = 2na. Amplitude of each ring is modulated as a
function cos(nU). Phase of spiral (w) is exactly the phase of
this modulation. Resulting lineshapes are shown in Fig. 1.

Positions of artifacts are independent of the maximum
value of r and of Dr. Although, discrete sampling causes
periodicity of artifacts. In consequence, it is not possible
to set position of the first ring of artifacts as far as desired
(as it could be wrongly predicted from equation R = 2na).

Using discrete sampling, it is impossible to infinitely
increase number of rounds N keeping the same number
of points K and rmax (i.e., constant Dr). In such discrete
case Eq. (17) should be rewritten as
SðR;UÞ¼ 2p
XK

k¼0

X1
n¼�1

inJ n
RkDr

2

	 

cos n U�akDr�wð Þ½ �

" #

�
X1

n¼�1
inJ n

RkDr
2

	 

cos n UþakDrþwð Þ½ �

" #

�
X1

n¼�1
jnJ n

RkDr
2

	 

cos n U�akDr�wð Þ½ �

" #

� �
X1

n¼�1
jnJ n

RkDr
2

	 

cos n UþakDrþwð Þ½ �

" #
kDr

ð19Þ

Both cosine and Bessel functions are sensitive to discrete
sampling and above infinite sum of functions will always
contain infinite number of wrongly sampled functions as
their frequency 2na increases with n. But, as long as Ny-
quist theorem is not fulfilled only for functions of high n

(which give non-significant integral) the inner ring is quite
free of artifacts. As shown in Fig. 2 increasing parameter a

leads to increasing the radius of the first ring of artifacts to-
gether with growing number of artifacts inside of it (result-
ing from integration of growing number of wrongly
sampled terms).
3.3. Radial sampling as a special case of spiral experiment

Above notation can be used to describe known types of
sampling which were presented before, such as radial
sampling.

Setting spiral parameter a = 0 we obtain sampling
scheme for single line radial sampling (Fig. 3a).

This leads to well known relation between time domain
sampling pattern and position of artifacts, i.e., artifact
ridges are concentrated at:

U ¼ p
2
� w ð20Þ

Typical lineshape from radial sampling processed by MFT
is shown in Fig. 3b. It should be noted that result is iden-
tical to that obtained from backprojection technique.
3.4. Random sampling

In the recent communication [31] we have shown that
random off-grid sampling with decaying time domain
points density provides superior results in comparison to
regular sampling schemes discussed above. This kind of
sparse sampling enables collection of data far below the
Nyquist condition which has to be fulfilled in the case of
conventional regular sampling. Therefore, for random
sampling using n points relative data points density H
(Eq. (21)) could be set below 1.

H ¼ n � ðt1 max � t2 maxÞ�1

sw1 � sw2

ð21Þ



Fig. 1. Comparison of point spread functions (c) and (d) obtained by spiral sampling along two different spiral trajectories, i.e., (t1, t2) = (rjsin(ar)j,
rjcos(ar)j) (a) and (t1, t2) = (rjcos(ar)j, rjsin(ar)j) (b). Two hundred and fifty-six sampling points were used, spiral parameter a = 10p/256 and maximum r

value rmax = 0.03 s. The artifact pattern is present in form of rings with modulated amplitude. Phase of modulation can be changed by changing phase w of
sampling spiral by 90�. In consequence, adding two presented spirals together causes cancelation of the first ring of artifacts [30].
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where t1max and t2max are maximum evolution times, sw1

and sw2 are respective spectral widths.
There are two general methods of treating randomly

sampled data: weighted samples (WS) method and
weighted probability (WP) method [41,42]. The first
approach is based on uniform probability density function
(PDF) of data points and weighting/apodization prior to
FT similarly as in conventional NMR experiments. WP
method assumes a non-uniform probability distribution
of time domain data points. In the ideal case of oscillatory
decaying signal both methods provide identical results, i.e.,
employing of non-uniform PDF is an equivalent of time
domain signal apodization (Fig. 4). However in practice,
when decaying signals in the presence of noise are
observed, the matched PDF should be chosen [31]. Other
important difference in comparison to regular sampling
schemes is that the acquisition of point t1 = 0, t2 = 0 is
not necessary and should be avoided, as it causes DC offset
in frequency domain.

According to sampling theorem [43] time domain signal
of finite spectral band is fully specified by its values at equal
intervals (limited by Nyquist theorem). Its Discrete Fourier
Transform obtained by integration according to rectangu-
lar rule (equal weights) is exactly reversible. Equal distance
is crucial here. This is no longer possible in the case of non-
uniformly sampled signal, even if all sampling points fulfill
Nyquist relation and the same method is used for integra-
tion with exact weights values (Fig. 5). In other words, the
presence of sampling artifacts is associated rather with
unequal distances between points than with improper inte-
gration. The same integration method gives perfect spec-
trum from conventional sampling and noisy from
random sampling. It is also noteworthy that in fact, in
practice weights are set by apodization function which
always should be used for truncated signals. Hence, even
for conventionally sampled time domain, constant weights
for all points are not used which leads to systematic devia-
tion from proper integration.

Although, numerical integration do not allow to obtain
spectra free of artifacts from non-conventional data sets, it
affects point spread function. Most of numerical integra-
tion methods are based on simple polynomial interpola-
tion. In 1D case the maximum allowed degree of
polynomial is equal to n � 1 (where n is number of
recorded time points), but more common are simpler meth-
ods: rectangular rule (based on polynomials of zero
degree), trapezoidal rule (polynomials of first degree) or
more complex Lagrange interpolation [29]. In the case of
2D numerical integration owing to numerical complexity
only simplest quadratures could be employed: Delaunay



Fig. 2. Comparison of point spread functions versus spiral parameter a:
(a) a = 12p/256/rmax, (b) a = 14p/256/rmax, (c) a=16p/256/rmax, (d)
a = 18p/256/rmax, and (e) a = 20p/256/rmax. All simulations were per-
formed with 256 sampling points, spectral widths of 2000 Hz and
rmax = 0.03 s. With increasing a the radius of first ring of artifacts grows.
However, higher order artifacts appear within the ring.
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triangulation of time surface [44], which is extension of 1D
trapezoidal rule, and Voronoi tessellation [45], which is
related to 1D rectangular rule. However, it is known that
while polynomial interpolation provides good results in
the integration of rational functions it is not well suited
for oscillatory functions [46,47].

In the case of non-uniform sampling of time domain,
employing rectangular or trapezoidal rule (or its higher
dimensional equivalents) could give improved results (in
the terms of signal-to-artifact ratio) only in the case of
oversampling, i.e., H > 1. In our previous work [31] we
observed this effect for triangularization of time domain
area. Now we discuss similar results obtained using sum-
mation over Voronoi cells area. Also in this case increased
and frequency dependent artifact pattern is observed. This
is due to disregarding of some extremes of oscillatory func-
tion between data points, which in case of simple quadra-
tures significantly reduces precision of integration. Since
the integrand given in Eq. (4) oscillates with higher fre-
quency far away from the peak position the errors increase
with the distance from the signal. This characteristic pat-
tern is observed always, when polynomial approximation
of integrand is employed, as shown for example of employ-
ing 1D Lagrange interpolation and 2D Voronoi tessellation
[36]. The area of the low artifact region in the signal vicin-
ity decreases with decreasing relative points density H.

3.5. Optimization of random sampling

The random sampling of the evolution time space
causes, especially for low relative sampling densities H,
irregularities in the covering time space. The significant
improvement of results and reduction of artifact level could
be obtained by the simple modification of random sam-
pling schedule. Instead of random choosing of time coordi-
nates for all points in the limits of maximum evolution
time, the time domain is divided into several small cells,
each containing one randomly chosen point. For uniform
PDF all cells are of equal area, but for non-uniform PDF
they are appropriately scaled. This procedure reduces the
deviation of distances between time points, but the sam-
pling scheme remains random. The Gaussian distributions
of data points using standard and optimized algorithm are
compared in Fig. 6. The results of MFT are similar to those
obtained using numerical quadratures (i.e., clean area in
the signal vicinity is observed), although the signal-to-noise
ratio is improved, and the clean region in signal vicinity is
significantly larger. This effect is obtained due to more uni-
form points distribution and therefore better fulfilling of
equal weights approximation. The comparison of signal-
to-artifact ratio for differently weighted MFT in function
of relative data points density H is shown in Fig. 7. The sig-
nal-to-artifact ratios were evaluated according to the defi-
nition, using root-mean-square of spectral values from
the quarter of spectrum opposite to the quarter containing
peak.

In Fig. 8, we plot the comparison of spectra obtained
using simple summation with weights w(t1, t2) = 1 (Fig. 8a
and b) and with w(t1, t2) set to area of Voronoi cells



Fig. 3. Single line radial sampling (a) and its point response function after MFT processing (b). Phase w = 30� results in ridges at spectral position
U = ± 60�. Jacobian r was used during transformation.

Fig. 4. 1D simulations of weighted samples and weighted probability method using sin xð Þ
x

h i2

as PDF (a and c) or weighting function (b and d). (a)
Histogram of sampling scheme showing points density, (b) analogical weighting function, (c) Fourier Transform of time domain signal sampled according
to scheme (a), and (d) Fourier Transform of randomly distributed, with uniform PDF, data points. Signal of 0 Hz frequency, acquisition time of 1 s and
8192 sampling points was simulated. Lineshape is convolution of Lorentzian function with characteristic triangular function (which is FT of sinðxÞ

x

h i2

[43]) in
both (c) and (d). Therefore, lineshape resulted from random sampling with non-uniform PDF can be easily predicted, as a convolution of Lorentzian
function with Fourier Transform of PDF. In the case of uniform PDF, similarly as for conventional sampling the convolution with weighting profile is
observed.
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(Fig. 8c and d). The spectra were simulated with very low
relative time domain point density H of 2.4%. For spectra
shown in Fig. 8a and c the Gaussian data point distribution
was used. Whereas, the optimized distribution was
employed in the case of spectra plotted in Fig. 8b and d.
It is clearly visible that the artifact level is decreased the sig-
nal vicinity especially in the case of optimized sampling
(Fig. 8a and d). At this relative data points density Voronoi
area integration (Fig. 8c and d) increases artifact level, and
the ‘‘low noise’’ region is very small especially for non-opti-
mized sampling. Similar result was recently reported in the
work of Pannetier et al. [36] who showed approx. 15%
decreasing of signal-to-artifact ratio in simulated experi-
ments with Voronoi integration and H of 40%. It should
be noted, that in real experiment using decaying probabil-
ity density function, the total noise level (i.e., sum of arti-
facts and usual thermal noise), in spectra obtained by
Voronoi integration would be significantly increased in



Fig. 5. Numerical evaluation of Fourier integral in the case of regular
sampling fulfilling Nyquist theorem (a), and random sampling (uniform
PDF) with distance between every neighboring points not exceeding sw�1

(b). Both Fourier integrals were calculated using weights equal to
distances between points (i.e., rectangular rule). While, the regularly
sampled spectrum does not exhibit any artifacts, they are present in the
case of random sampling. Thus, presence of sampling artifacts is the
matter of sampling scheme rather than integration method.

Fig. 6. Illustration of optimized random sampling. (a) Two hundred and fifty
number of points, according to the same distribution, each placed in the indiv

Fig. 7. Signal-to-artifact ratio in 2D simulated spectra. 512 time domain
points, m1 = m2 = 300 Hz. t1max = t2max = 20 ms. n, Gaussian distribution
with r = 0.01 s, MFT using w(t1, t2) = 1; h, optimized Gaussian distribu-
tion with the same r, MFT using w(t1, t2) = 1; m, Gaussian distribution
with r = 0.01 s, MFT using weights set to Voronoi cell areas; j, optimized
Gaussian distribution with the same r, MFT using weights set to Voronoi
cell areas. The best results are achieved using optimized time domain
sampling scheme followed by simple MFT with equal point weights.
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comparison to results of MFT with weights w(t1, t2) = 1.
This is due to overweighting of the points for high evolu-
tion time.

The non-uniform time domain points distribution
causes artifacts which depend on the sampling schedule
and signal shape. The relative amplitude of artifacts
-six random points with Gaussian distribution (r = 0.5), and (b) the same
idual cell.



Fig. 8. Comparison of contour plots of 2D spectra obtained by simulation using random time domain points distribution and parameters according to
experimental 15N-edited NOESY-HSQC experiment shown in Fig. 10, but number of time domain points set to 512, which gives points density of 2.4% of
Nyquist density. (a and b) Simple summation with weights w(t1, t2) = 1; (c and d) weights w(t1, t2) set to area of Voronoi cells. For spectra (a and c) the
Gaussian data point distribution was used, and in the case of (b and d) optimized distribution was employed. Artifact level in spectra (a and b) obtained
with constant weights is approximately 15% lower than when Voronoi tessellation was used.
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decreases proportionally to the square root of the number
of data points. It has been shown in 1D applications (other
than NMR), that the correct result could be obtained using
all weights equal 1 [41] (assuming equal contributions to
the integral given in Eq. (4) from all data points).

To summarize, the proper integration of Eq. (4)
improves results of MFT only for the large number of data
points, above the Nyquist density. Similarly as it is not pos-
sible to avoid signal folding by data processing methods, in
the case of conventional regular sampling, it is not possible
to obtain ideal spectrum using non-uniform and sparse
sampling of the time domain.

3.6. Removing artifacts

As mentioned before, shape of artifacts in spectra of
non-uniformly sampled signals is determined only by their
frequency, amplitude, convolution, and time domain
points coordinates used for spectrum acquisition. Hence,
artifacts relative position is related to the signal frequency,
and their amplitude is proportional to the signal amplitude.
Therefore, knowing of time domain points coordinates and
frequencies, intensities and linewidths of strong signals it is
possible to accurately predict artifact pattern. This allows
for selective subtraction of artifacts due to strong peaks.
Such procedure is useful in the case of spectra with high
dynamic range of signal amplitudes, for example NOESY,
where artifacts associated with diagonal peaks may lead to
disregarding of weak resonances which are necessary for
structural analysis. Cleaning procedure is realized in the
following manner (see also flowchart in Fig. 9):

1. Peak-picking of the strongest resonances is performed
using standard spectrum visualization software [48].
This can be done automatically. Peaks should be fitted
with appropriate function (depending on the time points
PDF—Lorentzian or Gaussian) to obtain peak line-
widths. List of peaks containing peak frequencies,
amplitudes, and linewidths is saved in a file.

2. Cleaning program generates ‘‘artificial’’ multidimen-
sional FID as a sum of eight modulation terms needed
to obtain quadrature in all three dimensions:



Fig. 9. Flowchart illustrating the idea of cleaning algorithm. It should be noted, that in all experimental examples presented here and tried so far in our lab
only one iteration (one peak-picking) had to be performed.
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FIDðt1; t2; t3Þ¼
X

i

Ai cosð�Xi
1t1Þcosð�Xi

2t2Þcosð�Xi
3t3Þ

� expð�R1t1�R2t2�R3t3Þwðt1; t2; t3Þþ � � �
ð22Þ

where i is the number of peaks and w(t1, t2, t3) are eventual
apodization weights. Scaling factors Ai are calculated to
obtain correct FID amplitudes from peak intensities
and are determined by Fourier Transform at positions
of the resonances. Relaxation rates are considered to be
equal to peak linewidths. Total FID as well as its i individ-
ual components of above sum are saved in separate files.

3. The ‘‘artificial’’ 3D FIDs of all peaks and their sum are
transformed in the direct dimension in the same way as a
true data and stored separately. Then, the MFT proce-
dure for the total FID is performed in the regions match-
ing with peak positions in F3 (or neighboring to them).
For F1/F2 points in the range of 2.5 linewidth from peak,
the FID component of a appropriate frequency is sub-
tracted from the summed FID to avoid deletion of the
peaks.

4. Resulting spectrum containing artifact pattern (with no
peaks) is subtracted from the experimental spectrum.

It should be noted, that only peak-picking is done by a
user and the remaining procedure is performed automati-
cally and does not require adjusting of any parameters.

Similar procedure has been implemented before in 1D
FT (or series of 1D FTs), first in astronomy [49], then in
NMR for 1D sparse sampling in 2D acquisition [50],
removing twisted-peak lineshapes [51] or projection-recon-
struction ridges [52]. The difference is that in mentioned



Fig. 10. Comparison of contour plots of F1F2 planes at
x3(1H) = 8.746 ppm, obtained in 15N-edited NOESY-HSQC experiment
for 13C, 15N-labeled ubiquitin on 700 MHz spectrometer, using conven-
tional (a), random sampling (b), and random sampling with artifacts
cleaned by simulation and subtraction as described in text (c). The spectral
width of 12,000 · 2000 · 12,000 Hz was set in F1, F2, and F3, respectively.
The maximum evolution times t1 and t2 of 30.0 ms, were used in
experiment with random sampling, H = 10.6%. In the conventional
experiment 115 and 20 t1 and t2 increments, respectively was collected,
which is equivalent to maximum evolution times t1 and t2 of 9.6 and
10 ms, respectively. Four scans were coherently added in all four data sets
for 2300 t1/t2 data points, thus the acquisition time of both, conventional
and randomly sampled experiments were equal. For conventional spectra
cosine weighting function was applied prior to Fourier transformation in
all dimensions, while in the case of random sampling with exponential or
Gaussian data point distribution only in t3. The spectra were transformed
with the resolution of 1024 · 512 · 2048 points in F1, F2, and F3,
respectively.
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approaches correlation peaks are not omitted during clean-
ing procedure (as it is not possible in conventional sequen-
tial multidimensional FT computed with variable
separation) but removed and then reintroduced artificially
into final spectrum. Moreover, all these procedures are per-
formed in a large number of iterations, equal to number of
removed peaks. In our method, one iteration (using all
undoubtedly selected resonances) has given satisfying
effects in all experimental cases tried so far. It should be
noted that it is much easier to select a large number of
strong resonances in one step in the case of random sam-
pling than in Projection Reconstruction, because of lower
artifact level.

As an example we present 15N-edited NOESY. Result of
such cleaning procedure is demonstrated in Fig. 10.
Removal of artifacts allows finding of new peaks masked
by artifacts and does not affect relative signal intensities,
thus allowing for estimation of structural constrains. In
Fig. 11, we plotted signal intensities in ‘‘cleaned’’ 15N-edi-
ted NOESY spectrum, acquired using random acquisition
scheme and processed by MFT, vs. conventional experi-
ment of the same duration. The high correlation coefficient
(R = 0.995) indicates that both spectra provide the same
structural information. Moreover, due to significantly
improved resolution, it was possible to find ca. 10% more
weak signals in randomly sampled experiment. The compu-
tational time in given example was about 3 h.

4. Experimental

The 3D 15N-edited NOESY-HSQC spectra were
recorded for 1.5 mM 13C, 15N double labeled human ubiq-
uitin in 9:1 H2O/D2O at pH 4.5 at 298 K on a Varian
NMR System 700 spectrometer equipped with a Performa
IV z-PFG unit and using the 5 mm 1H, 13C, 15N—triple
resonance probehead with high power 1H, 13C, and 15N
p/2 pulses of 5.9, 13.5, and 31.0 ls, respectively. The con-
ventional pulse sequence were adapted from the Varian
Userlib BioPack package and processed by NMRPipe
[53] software saving only amide protons region in F3

dimension. The MFT was performed employing PC with
3.0 GHz Pentium 4 processor running under Linux OS.
The software is available from authors. All NMR spectra
were analyzed by Sparky [48] program.

5. Conclusions

We have shown that Multidimensional Fourier Trans-
form is a simple method to process randomly sampled mul-
tidimensional NMR data. Contrary to other approaches it
is general and does not require user adjustable parameters
and assumptions. This approach enables recording of mul-
tidimensional experiments with improved resolution
achievable in given acquisition time and retaining all fea-
tures of conventional spectra. The superior spectral resolu-
tion feasible by random sampling and MFT is of high
importance regarding biomolecular NMR spectroscopy,
and could be also applied for processing of other uncon-
ventionally sampled multidimensional signals without
necessity of time domain signal interpolation.

The FT processing of non-regularly sampled data always
gives rise to artifacts, whose level is lowest in the case of ran-
dom sampling. In the case of significantly undersampled sig-
nals the best results are achieved using equal weights in
Fourier integral for all time domain points. On the other
hand, described in this communication simple optimization
of random sampling schedule improves results owing to bet-
ter fulfilling of equal weights approximation.

The artifacts level is proportional to signal amplitude,
therefore even for highly sensitive cryogenically cooled
probes the signal-to-artifact level remains unchanged.



Fig. 11. Correlation between 453 peak intensities (in arbitrary units) in
randomly sampled (Arand) and conventional (Aconv), 15N-edited NOESY-
HSQC experiments shown in Fig. 10. The correlation coefficient R of
0.995 was obtained.
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However, since the artifacts are exactly predictable on the
basis of sampling schedule and signal frequencies it is pos-
sible to identify strong signals and subtract calculated arti-
facts. In the case of spectra with the high dynamic range of
signal intensities, as for example NOESY experiments, the
removing of artifacts, appearing mainly due to strong diag-
onal peaks enables to identify additional contacts, and pre-
serves the advantages of high resolution due to sparsely
sampled time domain.
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